
New version is out: https://civitai.com/models/628865/sotediffusion-v2
Anime finetune of Würstchen V3.
This release is sponsored by fal.ai/grants
Trained on 6M images for 3 epochs using 8x A100 80G GPUs.
This model can be used via API with Fal.AI
For more details: https://fal.ai/models/fal-ai/stable-cascade/sote-diffusion
Please refer to Huggingface for SD.Next UI, Diffusers or UNet models:
https://huggingface.co/Disty0/sotediffusion-wuerstchen3
CivitAI page has only the ComfyUI checkpoint models.
Inference Parameters:
Download the Main model (8.14 GB file):
https://civitai.com/api/download/models/563950?type=Model&format=SafeTensor&size=pruned&fp=fp16
Download the Decoder model (4.24 GB file):
https://civitai.com/api/download/models/563892?type=Model&format=SafeTensor&size=pruned&fp=fp16
Positives:
newest, extremely aesthetic, best quality,
Negatives:
very displeasing, worst quality, monochrome, realistic, oldest, loli,
Main:
Sampler: DDPM or DPMPP 2M with SGM Uniform
CFG: 7
Steps: 30 or 40
Decoder:
Sampler: Euler a Karras
CFG: 1 or 1.2
Steps: 10
Compression: 42 (or 32 to 64)
Resolution: 1024x1536, 2048x1152.
Anything works as long as it's a multiply of 128.
Training:
Software used: Kohya SD-Scripts with Stable Cascade branch.
https://github.com/kohya-ss/sd-scripts/tree/stable-cascade
GPU used: 8x Nvidia A100 80GB
GPU hours: 220
Base
parameters | value
-
amp | bf16
-
weights | fp32
-
save weights | fp16
-
resolution | 1024x1024
-
effective batch size | 128
-
unet learning rate | 1e-5
-
te learning rate | 4e-6
-
optimizer | Adafactor
-
images | 6M
-
epochs | 3
Final
parameters | value
-
amp | bf16
-
weights | fp32
-
save weights | fp16
-
resolution | 1024x1024
-
effective batch size | 128
-
unet learning rate | 4e-6
-
te learning rate | none
-
optimizer | Adafactor
-
images | 120K
-
epochs | 16
Dataset:
GPU used for captioning: 1x Intel ARC A770 16GB
GPU hours: 350
Model used for captioning: SmilingWolf/wd-swinv2-tagger-v3
Model used for text: llava-hf/llava-1.5-7b-hf
Command:
python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./
dataset name | total images
-
newest : 1.85M
-
recent : 1.38M
-
mid : 993K
-
early : 566K
-
oldest : 160K
-
pixiv : 344K
-
visual novel cg : 231K
-
anime wallpaper : 105K
-
Total: 5.628.499 images
Note:
-
Smallest size is 1280x600 /768.000 pixels
-
Deduped based on image similarity using czkawka-cli
-
Around 120K very high quality images got intentionally duplicated 5 times, making the total image count 6.2M
Tags:
Tag Format:
Model is trained with random tag order but this is the order in the dataset if you are interested:
aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags
Date:
-
newest : 2022 to 2024
-
recent : 2019 to 2021
-
mid : 2015 to 2018
-
early : 2011 to 2014
-
oldest : 2005 to 2010
Aesthetic Tags:
Model used: shadowlilac/aesthetic-shadow-2
-
score > 0.90 : extremely aesthetic
-
score > 0.80 : very aesthetic
-
score > 0.70 : aesthetic
-
score > 0.50 : slightly aesthetic
-
score > 0.40 : not displeasing
-
score > 0.30 : not aesthetic
-
score > 0.25 : slightly displeasing
-
score > 0.10 : displeasing
-
rest of them : very displeasing
Quality Tags:
Model used: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth
-
score > 0.980 : best quality
-
score > 0.900 : high quality
-
score > 0.750 : great quality
-
score > 0.500 : medium quality
-
score > 0.250 : normal quality
-
score > 0.125 : bad quality
-
score > 0.025 : low quality
-
rest of them : worst quality
Rating Tags:
-
general
-
sensitive
-
nsfw
-
explicit nsfw
Custom Tags:
-
image boards: date,
-
text: The text says "text",
-
characters: character, series
-
pixiv: art by Display_Name,
-
visual novel cg: Full_VN_Name (short_3_letter_name), visual novel cg,
-
anime wallpaper: date, anime wallpaper,
License
SoteDiffusion models falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points:
-
1. Modification Sharing: If you modify SoteDiffusion models, you must share both your changes and the original license.
-
2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.
-
3. Distribution Terms: Any distribution must be under this license or another with similar rules.
-
4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.
Notes: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license.
描述:
Trained more. I will try to target weekly releases.
Renamed "late" tag to "recent".
Decreased gradient accumulation steps from 32 to 16.
Can still fall back to realistic, use "anime illustration" tag when this happens.
训练词语:
名称: sotediffusion_preAlpha1.safetensors
大小 (KB): 7010107
类型: Model
Pickle 扫描结果: Success
Pickle 扫描信息: No Pickle imports
病毒扫描结果: Success