SPEED_Q8版本FLUX_dev_Q4_K_M (ID: 751359)

SPEED_Q8版本FLUX_dev_Q4_K_M (ID: 751359)

I chose the best from each kind

  1. the best in small models (Q2_K)

  2. in the middle (Q4_K_M)

  3. the most close to original model is (Q8)

    its up to you

I will be happy to make any quantization request for this merged version
DONE

  • For optimal results, we recommend trying this advanced workflow:

https://civitai.com/models/658101/flux-advance

basic

https://civitai.com/models/652981/gguf-workflow-simple

just download this and install missing nodes from manager

  • for t5 gguf

https://civitai.com/models/668417/t5gguf

  • what is the best of (4th gguf quantization)?

Key Features:

Merges the strengths of Flux1-dev and Flux1-schnell

big thanks for https://huggingface.co/city96 who start GGUF journy

if you face this error during loading gguf loader

 newbyteorder was removed from the ndarray class in NumPy 2.0.

pip install numpy==1.26.4

Works on lower-end GPUs (tested on 12GB GPU with t5 fp16)

High-quality output comparable to more resource-intensive models

描述:

训练词语:

名称: speedQ8_fluxDevQ4KM.zip

大小 (KB): 6604770

类型: Model

Pickle 扫描结果: Success

Pickle 扫描信息: No Pickle imports

病毒扫描结果: Success

SPEED_Q8

SPEED_Q8

SPEED_Q8

SPEED_Q8

SPEED_Q8

资源下载
下载价格VIP专享
仅限VIP下载升级VIP
犹豫不决让我们错失一次又一次机会!!!
原文链接:https://1111down.com/1087648.html,转载请注明出处
由于网站升级,部分用户密码全部设置为111111,登入后自己修改, 并且VIP等级提升一级(包月提升至包季,包季提升到包年 包年提升至永久)
没有账号?注册  忘记密码?

社交账号快速登录