Kohaku-XL Epsilon_Navigator版本v1.0 (ID: 463105)

Kohaku-XL Epsilon_Navigator版本v1.0 (ID: 463105)

该LoRA模型旨在增强Kohaku-XL Epsilon的图像生成质量,其主要使用方法是将特定触发词“Best-A”置于输入的第一个token,这种做法源于对Kohaku-XL Epsilon模型在处理高质量图像生成方面存在的不足,通常情况下,即便使用“masterpiece”这样的高质量控制词,结果仍可能不尽人意,这或许与我对模型的操作不够熟练有关,

在一次意外的操作中,我发现在Kohaku-XL Epsilon上运用通过大量高质量图像训练得到的LoRA模型,能显著提升生成图像的质量,尽管这可能导致画风略有偏向LoRA模型的风格,但这种变化引发了一个想法:或许可以利用大量高质量图片来强化生成过程中质量控制词的效果,因此,这个LoRA模型的诞生背景是基于这样的需求和实验,

LoRA模型训练了约3万张风格各异的高质量图片,旨在加强原模型中的一些常用概念,鉴于Kohaku-XL Epsilon本身拥有庞大的训练数据量,直接对“masterpiece”进行调整效果有限,因此,我引入了新的质量提示词“Best-A”,它能够激活LoRA模型中所有经训练的概念,从而有效引导Kohaku-XL Epsilon生成更高或更低质量的图像,这也是新模型名称的由来,

需要注意的是,尽管LoRA模型对每种画风都进行了与Kohaku-XL Epsilon相同的标注,它仍可能对原有模型的整体风格产生轻微调整,如果在使用后发现图像质量较原始模型更低,建议停止使用此LoRA模型,

The LoRA model aims to enhance the image generation quality of Kohaku-XL Epsilon. Its primary method of use involves placing a specific trigger word, "Best-A," at the first token of the input. This approach stems from the shortcomings of the Kohaku-XL Epsilon model in generating high-quality images. Typically, even using a quality control word like "masterpiece" might still yield unsatisfactory results, which may be due to my lack of proficiency with the model.

During an accidental operation, I discovered that applying the LoRA model, which had been trained with a large number of high-quality images, to Kohaku-XL Epsilon significantly improved the quality of generated images. Although this might slightly shift the style towards that of the LoRA model, it sparked an idea: perhaps utilizing a large volume of high-quality images could strengthen the effect of quality control words during the generation process. Thus, the birth of this LoRA model was based on such needs and experiments.

The LoRA model was trained with about 30,000 high-quality images of various styles, aimed at enhancing certain common concepts within the original model. Given the vast amount of training data of Kohaku-XL Epsilon, directly modifying "masterpiece" had limited effects. Therefore, I introduced a new quality prompt, "Best-A," which activates all the trained concepts in the LoRA model, effectively guiding Kohaku-XL Epsilon to generate images of either higher or lower quality. This is also the origin of the new model's name.

It is important to note that although the LoRA model has been annotated in the same manner as Kohaku-XL Epsilon for each style, it might still slightly alter the overall style of the original model. If you find that the image quality is lower than that of the original model after use, it is advisable to discontinue using this LoRA model.

描述:

训练词语: Best-A

名称: kohaku-EP-NYA_NYA.safetensors

大小 (KB): 893433

类型: Model

Pickle 扫描结果: Success

Pickle 扫描信息: No Pickle imports

病毒扫描结果: Success

Kohaku-XL Epsilon_Navigator

Kohaku-XL Epsilon_Navigator

资源下载
下载价格VIP专享
仅限VIP下载升级VIP
犹豫不决让我们错失一次又一次机会!!!
原文链接:https://1111down.com/1035422.html,转载请注明出处
由于网站升级,部分用户密码全部设置为111111,登入后自己修改, 并且VIP等级提升一级(包月提升至包季,包季提升到包年 包年提升至永久)
没有账号?注册  忘记密码?

社交账号快速登录